Óbuda Unive Bánki Donát I	Faculty of Mechanical and Safety Insitute of Mechatronics and Vehicle Engineering				
Engineering					
Subject title a	and code: Industrial Robots Kinematics and Dynamics Credits: [/] BMXRRE5BNE				
Full-time	study ac. 2023/24 semester I				
	year				
The course is	available at: mechatronical engineering				
Supervised b	$\mathbf{y}: \qquad \text{Dr. Jozsel K. Iar} \qquad \text{Instructors: Dr. Jozsel K. Iar} $				
Prerequisite	(neptun code): Mechanics III. BGMINE3NNE				
Lecture: 2	Group seminar:0Lab:2Consultation:				
Way of assess	sment: Exam (Oral)				
Online consu	ltation (in case it's required): <u>https://bbb2.banki.hu/b/tar-vpt-qr3</u> (BBB link)				
Educational	Description and solution of the forward and inverse kinematic task of robots of open				
goal:	kinematic chain with a redundant general arm structure. Introducing students to basic				
	movement control methods based on the dynamic model. The purpose of the exercises is to				
	Introduce effective simulation and documentation methods.				
Education	Topics				
week	Topics				
[1.]	Operations that can be performed with rigid bodies: rotations around the origin as linear				
	operations, scalar product, definition of rotation matrices; the operation of rigid translation.				
Z.]	homogeneous marices.				
3.	Parameters of the rotational operations: the rotation and homogeneous matrices as				
	hypersurfaces embedded in a higher dimensional space; the identity operator, the tangent				
	space of the hypersurface at the identity element, exponential functions as constant				
	directional displacements in the hypersurface. Deduction of the elements of the tangent				
4.	Transformed tangents. The tangent space at the identity element as a linear spcae and an				
[]	algebra. Selection of right handed system of basis vectors in the tangent space. The				
	rotational aixs and the angle of rotation. The Rodrigues formula. Calculation of the				
	parameters of the Rodrigues formula from the rotational matrix. Rotated rotational axis				
5.	Cartesian Workshop Frame of coordinates. the "home position". The forward kinematic				
6	The translational and totational velocity at the tool center point. Setting the differential				
[0.]	inverse kinematic task.				
7.	Optimization under constraints. The Newton-Raphson Method. Gradient6 Descent Method.				
	Reduced Gradient and Lagrange Multipliers The Moore-Penrose pszeudoinverse.				
8.	Basics in Julia language.: integer and floating point representation of numbers. Arrays and				
	operations with arrays; global and local variables and their use in functions and for-next cycles. Function declaration, Making figures by the use of the PyPlot package. Matplotlib				
	The LATEX as object-oriented text editor. Document cClasses, embedded components.				
	labels and rferences. Citation by the use of BIBTEX databases. The TexStudio as excellent				
	aid for using LATEX.				
9.	Solution of the inverse kinematic task for redundant open kinematic chain.				
10.	Equations of motion of the robot with trespect to an inertial system of reference: deduction				
	of the equations of motion from the dynamic model. Euler-Lagrange equations of motion,				
	possibility for setting the dynamic model by the use of homogeneous coordinates				
11.	The Computed Torque Robot Control Possible requirements for making the trajectory				
[]	tracking error converge toward zero: exponential-polynomial forms, Lyapunov equation,				
	PD- or PID type controller The effects of the errors in the dynamic model ont he precisio				
	of trajectory tracking.				

12.	The Robust Variable Structure/Sliding Mode Controller.					
13.	Analysis and use of various dynamic models for the simulation of control tasks.					
14.	End of semester consultation.					
Mid-semester requirements						
Test		Assignment to be submitted		Lab measurement		
amount dates		amount	deadlines	amount	dates	
[]		1 piece of complex task	The last day of the education	[]	[]	

According to the Study and Examination regulations of Óbuda University attendance of group seminars and lab exercises are mandatory.

Other requirements for participation in sessions not covered by the regulations and restrictions on substitutions:

Test		Assignment to be submitted		Lab measurement	
maximum points available points	minimum score required to pass /test points	maximum points available points	minimum score required to pass / assignment points	maximum points available points	minimum score required to pass /lab points

Total number of points achievable in semester:points						
Grading	satisfactory	average	good	excellent		
thresholds	choose	choose	choose	choose		
Other evaluation cri	Other evaluation criteria:					
Ĭ						
Receive a signature						
denied entry:						
Required references: Lecture notes in PDF and sample programs available during the semester						
Recommended Somló J., Lantos B., P.T. Cat, Advanced Robot Control. Akadémiai Kiadó,						
references:	Budapest 1997					
Quality assurance methods of the There is possibility for online consultation with the						
subject: teacher on request in the necessary extent.						

Things, that are not included, can be found within the regulations of Óbuda University.