Óbuda University Bánki Donát Faculty of Mechanical and Safety			Insitute of Med	chatronics and Ve	hicle Engineering	
Engineering	Engineering					
Subject title a	and code: E	rogramming I.	BNIXI2YHBNE		Credits: 0	
Full-time	study 2023/20	24 <i>ac</i> . 2 S	semester			
The servers is	available et	year				
The course is	available at:	mechatron	ical engineering	F ¹ 1 4 1 7		
Supervised by	y: Dr. hab	11 Laufer Edit	Instructors: Dr.	Frigyik Andras, I	Jr. habil Laufer	
Duono qui gito ((Design of	Eul			
Prerequisite	(neptun code):	Weekly pu	mbon of loggong	INDINE		
Lecture: 2	Lecture: 2 Group seminar: Lab: 3 Consultation:					
Way of assess	sment: Exam	(Oral)				
Online consul	ltation (in case it's i	required): (BBB link)			
Educational	Developing algori	thmic thinking, in	ntroducing the basic	tools of program	nming, which are	
goal:	needed during eng	ineering work. T	he acquisition of ba	sic algorithms an	d data structures.	
0	Show basic comp	uter programming	g techniques and app	proaches. Student	s learn about the	
	basic algorithms a	nd data structure	s using an easy to 1	earn programmin	g language. This	
	subject helps to sol	lve complex engin	neering problems.	1 0		
		Sc	hedule			
Education			Topics			
week			I			
1.	Theory: The aim a	nd tools of compu	ter programming. St	ructured program	ming. Event-	
	driven programmir	ng.	1 8 8	1 0	C	
	Practice: Visual St	udio environmen	t Basic methods of C	onsole class. Vari	ables.	
2.	Theory: Basic data	structures and the	eir operations. (integ	ers, real, boolean)	. Conditional	
	statement.			,		
	Practice: Applicati	on of mathematic	al functions. Conditi	onal statement.		
3.	Theory: Loops. Array data structure.					
	Practice: Loops. R	andom number g	enerator.			
4.	Theory: Elementar	y programming th	neorems (result is a v	alue)		
	Practice: Array da	ta structure. Oper	ations with arrays.			
5.	Theory: Methods.	Value and referen	ce types.			
	Practice: Methods	. Elementary prog	gramming items.			
6.	Practice: Test 1					
7.	Theory: Character	and string type.				
	Practice: Characte	r operations. Strir	igs as character array	/S.		
8.	Theory: File manage	gement.				
	Practice: String op	erations.				
9.	Theory: Complex p	programming theo	prems (result is a set)	1		
	Practice: File man	agement basics.				
10.	Theory: Object ori	ented programmin	ng (abstraction, encap	psulation)		
	<i>Practice</i> : File man	agement. Delimit	ed text file.			
11.	Theory: Object ori	ented programmin	ng (properties, public	ity levels, object	arrays)	
	<i>Practice</i> : File man	agement.				
12.	Theory: Object ori	ented programmin	ng in practice.			
	<i>Practice</i> : Complex	task.				
13.	13. <i>Theory</i> : Database management.					
Practice: Test 2						
14.	14. <i>Theory:</i> Preliminary exam					
Practice: Retake test						
iviia-semester requirements						
Test Assignment to be submitted Lab measurement					surement	
amount	dates	amount	deadlines	amount	dates	
amount	Gaics	amount	deadimes	amount	Gailos	

2	6,13		
	~ 1 1 1	 0 0 1 1 77 .	

According to the Study and Examination regulations of Óbuda University attendance of group seminars and lab exercises are mandatory.

Other requirements for participation in sessions not covered by the regulations and restrictions on substitutions:

The subject requires individual preparation based on the Moodle materials, supported by consultation.

All main areas of the course are evaluated by tests. The course is to be considered successfully executed and a **signature** is obtained if and only if both tests (separately) are higher than 40%.

Signature is **denied** if the student cannot justify the absence for the test, has failed to write both tests, or smalls tests more then twice.

During the semester, the signature requirements can be **replaced** in the following cases: one of the laboratory tests failed; illness. In this way, only one of the tests can be rewritten.

Based on the Study Regulations III.6.(4), the student receive **offered grade** if he/she has written all the tests with grades minimum 2 and passed the preliminary exam.

Final grade is calculated in the following way: 50% average score of the lab tests, 50% oral exam. The oral exam must first be taken from a programming theorem. If it was successful, then a theory question follows.

Test		Assignment to be submitted		Lab measurement	
maximum points available 100points	minimum score required to pass /test 40points	maximum points available points	minimum score required to pass / assignment points	maximum points available points	minimum score required to pass /lab points

Total number of points achievable in semester: 100points						
Grading	satisfactory	average	good	excellent		
thresholds	40 % and above	55 % and above	70 % and above	85 % and above		
Other evaluation cri	Other evaluation criteria:					
Receive a signature	Receive a signature if the student cannot justify the absence for the test, has failed to write any					
denied entry:	denied entry: of the tests, or smalls tests more then twice.					
Required references: Moodle materials						
Recommended Computer Programming: The Bible: Learn From The Basics to Advanced of						
references:	eferences: Python, C, C++, C#, HTML Coding, and Black Hat Hacking Step-by-Step,					
Createspace Independent Publishing Platform, 2018.						
	Robert Ciesla, Programming basics, Getting Started with Java, C#, Python,					
	Apress, 2021					
Quality assurance methods of the						
subject:						

Things, that are not included, can be found within the regulations of Óbuda University.