Óbuda University Bánki Donát Faculty of Mechanical and Safety Engineering			Institute of Mechatronics and Vehicle Engineering			
Subject title and code: Advanced Algorithms RMXHAF4RNF Credits: 4						
Full-time	study 2024/20	25 ac. 2 s	semester			
vear						
The course is	available at:	mechatron	ical engineering			
Supervised by	y: Dr. Frig	gyik András	Instructors: Dr.	Frigyik András		
Prerequisite ((neptun code):	Object-Or	iented Programming	BMXOPE3BNF		
		Weekly num	ber of lessons			
Lecture: 1	Group sem	inar:	Lab: 2	Consu	ltation:	
Way of assess	sment: Exam	(Oral)				
Online consul	Itation (in case it's	required).	RRR link)			
Edu goal	The goal of the cou	rse is to demonstr	ate how to apply the	knowledge the st	idents acquired	
Edu. goai.	during the Algorit	thms and Data S	Structures and the	Ohiect -Oriented	Programming	
	courses to dynamic	cal data structure	es and the related al	gorithms. Graph	algorithms are	
	behind many soluti	ions to problems i	that arise in robotics	and logistics: Pr	oblems related	
	to optimal paths of	r routing problen	ns, in general. The la	ab sessions provi	de the students	
	with opportunities	to try out the algo	orithms covered in th	e lecture and hon	e their skills on	
	problems of ever in	creasing complex	xity.			
	Topics: Linked list	t, binary search i	tree, graph algorithi	ns, breadth-first	and depth-first	
	search, topologica	l sorting, path-fin	ding in graphs, mini	mal spanning tree	<i>25</i> .	
	1	Sch	edule			
Education			Topics			
week						
1.	Recursive algorithi	ms 17				
2.	Data structure: Arr	ay 24				
3.	Singly linked list 3	Singly linked list 3				
4.	Ordered linked list	Ordered linked list 10				
5.	Binary search tree:	Binary search tree: Insertion, traversal 17				
6.	Binary search tree:	Search 24				
7.	Binary search tree:	Deletion 31				
8.	Lab Midterm 7					
9.	Graph algorithms 1	4				
10	Rector's holiday	Rector's holiday				
11	Topological sorting	τ				
11.	Path finding in gra	Path finding in graphs. Minimal graphing trace				
12.	Theomy Midtorm	piis, Minimai spa				
15.	Make-un / Retake	of I ob Midtorn				
14	Breadth-first / Den	th-first search	1			
11.	Diedddii iiist / Dep	Mid samasta	r requirements			
		Whu-semester	requirements			
	Test	Assignment	to be submitted	Lab meas	surement	
amount	dates	amount	deadlines	amount	dates	
2	94h 124h maala			10	1224567	
2	8th,13th week	4		10	1,2,3,4,5,6,7, 12,13,14 (week)	
According to t	the HKR attendance	of group seminar	rs and lab exercises a	are mandatory.		
Other requirements for participation in sessions not covered by the regulations and restrictions on						
substitutions:						

Test		Assignment to be submitted		Lab measurement		
	maximum points available	minimum score required to pass /test	maximum points available	minimum score required to pass / assignment	maximum points available	minimum score required to nass/lab
	40/20 points	16/8 points	points	points	10 points	points

Total number of points achievable in semester:points							
Grading	satisfactory	average	good	excellent			
thresholds	40 % and above	55 % and above	70 % and above	85 % and above			
0.1 1							

Other evaluation criteria:

During the semester, in accordance with the schedule above, a student can make up one of the midterms if they have a valid official absence note (from a doctor or from a coach). The make up test for theory will happen during the semester at a separately assigned time. The blitz quizzes cannot be made up.

All main areas of the course are evaluated by tests. For the midterms only those solution elements (data or control structures and algorithms) are acceptable that were covered either in the lectures or at the lab sessions.

The course is to be considered successfully executed and a **midterm grade** is obtained if and only if the lab test and the theory test results are higher than 40%.

During the semester, the signature requirements can be **replaced** in the following cases: one of the laboratory tests failed; illness. In this way, only one of the tests can be rewritten.

 Percentage-wise contribution of the different tests to the final grade: Lab midterms together 40%, theory midterm 20% and the oral exam another 40%. Blitz quizzes provide extra points: 5-5 points to lab and theory midterms, respectively.

 Receive a signature denied entry:
 Signature is denied if the student cannot justify the absence for the test, has failed to write any of the tests, or miss blitz quizzes more then twice, or the number of absences exceeds the number specified in SRS.

 Required references:
 (Undergraduate Topics in Computer Science) K. Erciyes - Algebraic Graph Algorithms. A Practical Guide Using Python-Springer (2022)

 Recommended references:
 Quality assurance methods of the subject:

Things, that are not included, can be found within the regulations of Óbuda University.