Course description, Requirements

Óbuda University	Institute of Natural Sciences and Basic Subjects		bjects		
Bánki Donát Faculty of Mechanical and Safety	(TAI)				
Engineering				_	
Course title and code: Mathematics III, BTXMME3BNF			Credits	Credits: 5	
Full-time, semester 1.					
Faculties in which the subject is taught: Mechatre	onics enginee	r, BSC			
Drenoguisites conditional Mothematics II signature					
Prefequisites conditions: Mathematics II signature					
Lessons per week. Theory: 2 Practice (III Al		Laboratory: 2	Consultation:		
Exam type (s,v,1): exam					
Syllabus					
Aim: The purpose of the lecture is to present efficient mathematical tools that can be successfully					
applied in engineering sciences. In the framework of the practice lessons, the students deepen their					
knowledge through practical tasks, thereby becoming able to solve complex engineering problems at the					
end of the semester.					
<i>Curriculum</i> : Firts order and second order differential equations. Laplace transform. Topics in					
probability theory. Basic continuous and discrete	distributions,	characterization o	t a distibution.	Tab	
	11	• . • •	Lec.	Lab.	
1. Concept of a differential equation. Elementary, directly integrable equations.			ions. 2	2	
General solution, particular solution.					
2. Separable differential equations.				2	
			2	2	
3. First order linear differential equations. Method	l of "variatior	of constant."			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2	2	
4. Second order linear differential equations with	aconstant ac	ficianta Matha	dof		
4. Second order linear differential equations with	i constant coe	enicients. "Metho	2	2	
5. Concept of Laplace-transform. Basic theorems.	Basic rules, f	formulas.	2	2	
			2	4	
6. Applications of Laplace-transform in the theory of linear differential equations.				•	
			2	2	
7. Midterm 1.					
			2	2	
8 Introduction to probability theory Basic	concepts avi	oms Combinato	rical		
methods Classic probability			2	2	
9. Conditional probability, Bayes-theorem.			2	2	
				-	
10. Concept of the probability distribution. Discret	ete and contin	uous distributons,	and	2	
their characterization. Expected value, standard de	eviation, pdf,	cdf.	2	2	
11. Discrete distributions: hypergeometric, binom	ial, Poisson.				
	,		2	2	
12 Continuous distributions: uniform exponentie	1 normal				
12. Continuous distributions: uniform, exponentia	n, normai.		2	2	
13. Physical applications of probability theory.			2	2	
			2	-	
14. Midterm 2.			2	2	
			4	4	
Semester requirements			· ·		
2 midterm tests, exam.					

Requirements:

There will be 10 **blitz quizzes**, each worth 2 points. You can miss at most 3 quizzes! If you miss more than three, you can't get a signature!!! Quiz test can't be retaken and can't be improved and if you miss, can't be make it up!!!

Two **midterm tests**: On the 7th and 14th week. Its subjects are the topics covered up to the 6th week and up to weeks 8-13 respectively, both the theory and the problems. On the test you can get 40-40 points. If you take both midterm tests, you get a signature.

In case you missed or failed one test you have to retake it in order to qualify for the exam. If you passed the test you may retake it if you want to try to improve your score in the exam period. In this case the last result will be taken to the exam! If you miss both tests, you can't complete the course, you have to register for it again one year later.

If you have a signature, considering your total scores, you get an exam mark. Every exam mark will be registered in Neptune - including fail(1) - if you are registered for an exam.

If you got fail(1) or if you want to improve your exam mark you have only one possibility for taking that in the exam period. The exam covers every topic. On the exam you can get 100 points.

The **grade** is determined by the sum of the points you achieved on the tests (quizzes and midterm) or on the exam. The intervals are as follows:

0-39%: fail (1) 40-54%: pass (2) 55-69%: satisfactory (3) 70-84%: good(4) 85-100%: excellent (5)

Exam method: written

Literature:

Mandatory: Thomas Calculus I-III.; Pearson Addison- Wesley, 2005 Stewart Calculus; Brooks, 2008 Sheldon Ross: A first course in probability, Pearson, 2010 Paul Dawkins: Differential Equations, Prentice-Hall, 2007 Offered: